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FOREWORD 

This paper examines a two-sided strategic nuclear exchange 

model Involving ICBMs, SLBMs, bombers and societal value on 

each aide.     The first striker allocates his weapons against the 

second striker's weapons and value In such a way that, after 

massive retaliation by the second striker, the difference between 

the second striker's value destroyed and that of the first striker 

Is maximized.  The paper presents computational results Including 

the sensitivities of the outcomes to various force characteristics, 

The paper is a contribution to the literature In that It 

Incorporates realistic weapon-on-weapon attrition functions into 

a formulation of the two-strike strategic exchange problem for 

which globally optimal allocations can be guaranteed. 
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Chapter I 

INTRODUCTION 

Strategic weapons planning models based on two-strike nu- 

clear exchanges have been an Integral part of strategic analysis 

since the early 1960s.  One line of research in this area h^s 

been the development of models for which one could find "optimal" 

allocations of weapons to targets.  These models frequently took 

the form of max-min problems wherein the first striker has a 

choice of allocating his weapons against his opponent's value 

targets (economic and industrial targets), thereby obtaining 

immediate benefit, or of allocating those weapons against his 

opponent's weapons, in the hope of reducing the impact of the 

expected retaliation.  This question of balancing counterfcrce 

and countervalue targeting was perhaps academic when strategic 

weapons were relatively invulnerable.  However, with improved 

ICBM accuracy, this issue becomes increasingly significant. 

Among the approaches used in the past to answer this 

problem were the Strategic Weapons Exchange Models, reported 

in [1] and the Arsenal Exchange Model [2].  Neither of these 

models cou1d guarantee the globally optimal solution of the 

max-min problem they considered.  Both incorporated Lagrangian 

solution procedures. 

A branch-and-bound procedure was described by Bracken, 

Palk, and Miercort in [3] in which they constructed a piecewise- 

linear approximation to their original two-strike nuclear ex- 

change model and found the global solution to the piecewise- 

linear model using an algorithm of Palk [5].  The Bracken, Falk, 



Mlercort paper established that, in  principle, this approach 

could be practically applied In two-strike modelling. 

This paper extends the Bracken, Falk, Mlercort approach 

to a model of more Interesting detail, explicitly modelling 

ICBMs, submarines, and bombers.  Realistic attrition equations 

are developed, and the results of numerous computer runs of the 

model are presented to demonstrate some of the remarkable re- 

sponses of the model to parameter excursions. 
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Chapter II 

THEORETICAL DEVELOPMENT 

Let us call the first striker Red and his opponent Blue. 

Our scenario goes as follows:  Red strikes first with all his 

weapons on Blue's weapons and value, where the term "value" 

represents Blue's capability to sustain Its society, and may 

Include population, Industry, and so forth.  Blue then retaliates 

with all his remaining weapons against Red value.  This Inter- 

action Is depicted In Figure 1. 

First Striker 
(Red) 

Retaliator 
(Blue) 

Figure 1.  STRATEGIC EXCHANGE 

Red has two concerns:  first, to destroy Blue's value and 

second, to preserve his own value through destruction of Blue's 

retaliatory weapons.  To investigate this further, we develop 

some notation. 

We will denote Red's allocation by x = {x U 1 = 1     T" 

J»!,,.. ., J ), where x^, is the number of Red's class-i weapons 

directed against Blue class-j weapons for J=1,...,J-1, and x^j 

is the number of Red's class-i weapons directed against Blue 

value. Let B.(x) represent the number of Blue's class-j weapons 



that survive an attack x> for j = l,...,J-l, and let %_  = {y,,, .. ,y       ] 

be some Blue retaliation.  If DR(x) represents the damage to 

Blue value resulting from attack x and DR(^) Is the damage to 

Red value resulting from Blue retaliation ^, then we use as our 

objective function the difference 

Blue desires to minimize this difference for any given XJ while 

Red wishes to choose his attack x so that this expression is 

maximized, taking Blue's retaliation into account.  If m,, 

1-1,...jI represents Red's initial inventory of class-1 weapons, 

then this two-strike war can be modelled by the following mathe- 

matical programming problem 

max min DgU) - DR(^) 
x  y 

subject  to 

J 
I     x11   < m1 

j=l      J 
i=i,...,i 

yj   5 BJ^) j=i,...,J-I 

x. ..y. > o 1=1,...,l;   j=l, . , J . 

This problem can be greatly simplified if we make the 

rather weak restriction that DR(^) be monotone nondecreasing 

in each component of y; i.e., if Blue retaliates with any more 

of any weapon type, then the damage to Red's value does not 

decrease.  With this restriction the problem becomes 

max DB(x) - DR(B(x)) 

subject to 



J 
I    x. . < m    1=1}...,1 

j=l  J 

xij. > 0    1=1,...,!; j3!,. .. ,J 

B(x) = {B1(x)J B2(x),...,BJ_1(x)}. 

This reformulation Is crucial to our approach. The next two 

sections develop the functions B^Cx),...,B, .(x), DR(^)j an% 

DD(x). 



Chapter III 

WEAPON-ON-WEAPON INTERACTIONS 

This chapter develops formulae for attrition of Blue weapon 

resources resulting from a Red attack. 

For the purposes of this paper, we will allow Red and Blue 

four weapon classes each.1 The weapon classes, with their dis- 

tinguishing characteristics, are as follows: 

Class l--ICBMs. ICBMs are normally housed in silos, which 
are attacked individually. The locations of the silos are 
assumed to be known, and they may or may not be defended. 

Class 2--SLBMs-AT-SEA.  SLBMs-at-sea comprise those missiles 
on submarines that are patrolling on station.  Our model 
permits these submarines to be attacked by strategic weapons, 
Submarines are attacked individually, the attacker is un- 
certain of their location, and they are not defended. 

Class 3--B0MBERS.  Bombers are attacked in groups, at air- 
fields of known location, where they may or may not be 
defended.  (A "group" of weapons is a configuration such 
that an attack against any one of them is an attack against 
all of them.)  Unlike missiles, bombers may be scrambled 
on warning and called back, if necessary.  The model assumes 
five or fewer separate Blue airfields. 

Class 4--SLBMS-IN-PENS.  This class consists of SLBMs In 
submarines that are available for strategic retaliation but 
are in pens of known location.  Thus, they must put to sea 
before they can retaliate effectively.  All submarines at 
any given pen are attacked as a group and may or may not 
be defended.  We allow for three or fewer Blue pens. 

1Problems involving nore weapon classes can be and have been solved. For 
Instance, the IDASNEM model [4] developed at the Institute for Defense 
Analyses, using the approach outlined in this paper, allows nine weapon 
classes per side. 



If Red attacks Blue, and there are four weapon classes on 

each side, then there Is a maximum of sixteen weapon-on-weapon 

Interactions.  However, because one wouM pay a p^l^c ±n  pro- 

longed run times if one were to allow all interactions, it is 

desirable to disallow, a priori,   certain unlikely weapon-on- 

weapon interactions.  For instance, it is unlikely that Red 

bombers would be used against Blue ICBMs, since there would be 

sufficient warning before the bombers' arrival to launch all 

the ICBMs, thereby removing them as a target.  All weapons may, 

of course, attack value targets. 

We will assume that Red ICBMs and SLBMs-at-sea may attack 

any Blue weapon class.  Red bombers, however, will only be 

effective against Blue SLBMs-in-pens, provided we assume that 

the latter require sufficient time to put to sea and so are 

vulnerable to bombers.  Red SLBMs-in-pens may only attack value 

targets.  These relationships are summarized in Figure 2. 

ICBMs 

SLBMs-at-Sea 

Bombers 

SLBMs-in-Pens 

Value 

ICBMs 

SLBMs-at-Sea 

Bombers 

SLBMs-in-Pens 

Value 

Figure 2.  WEAPON-ON-WEAPON INTERACTIONS 

7 



The following set of equations gives the Blue surviving 

force after a Red attack.  The attacking units mentioned below 

are assumed to be warheads—when the attacking weapon is a 

missile—or bombs (or SRAMS, for appropriate parameter values) 

when the attacking weapon is a bomber.  Note that we are re- 

placing what are essentially random variables with their expecta- 

tions. 

A.   SURVIVING BLUE ICBM WARHEADS 

n : number of silos, 

p :  probability of single shot kill of a silo due to a r» 
single attacking unit of class r, 

p :  individual reliability of an attacking unit of 
class r, 

q :  overall reliability of weapon class r; i.e., there 
is a probability 1-q that no weapons of class r 
will function, 

0 :  probability that an attacking unit of class r will r penetrate silo defenses. 

W":  number of warheads per missile, 

x ,:  number of attacking units of class r assigned to 
rl  category "ICBMs." 

We require that attacking units of any single type be uni- 

formly distributed among the targets of a single category. 

Therefore, the number of attacking units assigned to each silo 

is x ,/n .  Then, the probability that an Individual silo sur- 

vives an attack by weapon class r, provided weapon class r does 

not fail, is 

^-Pr or Pr j 

Taking into account the probability that weapon class r might 

fail, the probability that a silo survives an attack by weapon 

class r is 

8 



(l-qr) + qr(l-Pr aj pj ) 
x^/n1 

Therefore, recalling that only Red weapon classes 1 and 2 will 

attack Blue ICBMs, the probability of a silo surviving the full 

attack is 

2    \ /I l\xrl/nI n  (1-qJ + a ^ -  -1 -1 ^ rl 

r=l 
fl-P a1 P1 \ •y ^r r yr j 

and so the approximate expected number of surviving Blue ICBM 

warheads is 

wV ^   j(l-qr)  +qr(l-PraJpj)Xrl/n   j. 

SURVIVING BLUE SLBM-AT-SEA WARHEADS 

3 
n : number of submarines-at-sea 

g 
T : probability that Red will correctly acquire the 

location of an individual submarine, 

p : probability of single shot kill of a submarine r due to a single attacking unit of class r. 

p :  individual reliability of an attacking unit of 
class r, 

q :  overall reliability of class r, 

S 
w :  number of warheads per missile, 

Y :  number of missiles per submarine, 

x ,;,:  number of attacking units of class r assigned to 
r'_  the category "SLBMs-at-sea. " 

As with ICBMs, we assume that the number of class-r attack- 
3 

ing units assigned to each submarine is x -/n .  Considering 

only class-r attacking units, the probability that a single 

submarine will survive is 



[l-'r 4 ) 
xr2/nS 

If weapon class r does not fall.  Taking this possibility Into 
accountj the probability of submarine survival Is 

x p/n 
(l-qr) + qr ^ -  -0l l2 K^) 

Now, the probability that the submarine will survive an attack 
by Red weapon classes 1 and 2 Is 

2    \ I S \ xr?/n 
n   (l-qr) + qr^ -  -M Tl 

r=l 
,(i-pr vl) 

All the above assumes that the location of the submarine Is 
known.  Considering the possibility that the submarine's location 
will not be acquired, the probability of submarine survival Is 

(1-TS) +T
S  J^ jd-q^ +qr(l-PI,pS)

Xr2/n [. 

Hence the approximate number of surviving Blue SLBM-at-sea 

warheads Is 

nW J(I-T
S
) + T

S
 n {(i-qr) + qr(i-pr pj) 

r2 n } • 

C.   SURVIVING FLUE BOMBS 

r, 
rrj:  number of bombers at airfield n (nal,...,5) (this 

may be 0 when there are fewer than 5 airfields). n 

n 
n :  probability that a bomber will successfully n scramble from airfield n. 

B p  : probability that a bomber at airfield n will be 
n*   destroyed when airfield n is attacked by a single 

class-r attacking unit, 
p :  individual reliability of a class-r attacking unit, 

10 



q :  overall reliability of weapon class r, 

g 
a  :  probability that a class-r attacking unit will 

'   penetrate the defenses of airfield n, 
■ft 

Y :  number of bombs per bomber at airfield n, 

x ,:  number of class-r weapons allocated to "bombers" 
r3  (r=lJ2). 

We will require that attacking units be allocated propor- 

tionally to the number of bombers at each airfield, thus airfield 

n receives 

B      / r    B mn Wji mn 

weapons of class r.  The probability that a bomber at airfield 

n survives a class-r attack, assuming no scramble and no overall 

failure of weapon class r, therefore is 

B   / r  B 

V1^:- an,r pn,rj      n-1 

Including the probability of successful scramble, the probability 

of survival is 

B . , i      B 
B ^ n  B, /,    B   B  \mn ^3^^ % ln + (l-nn) ^1-Pr anjr pn}rj      n-1 

Recalling that the probability that weapon class r will fail as 

a c 

is 

a class is 1-q , the probability of survival of a single bomber 

B v  / T  mB i^^Ko^cr'-3-ni (l-qr) + qr H« + (1 

Hence, the probability that a single bomber will survive the 

full attack Is 

11 

-- r 



R R 

n Id-q ) + q |nB + (i-n
B) fl-P aB  pB  V^ ^nk  ^l!. 

r_1 I   Hr   Mr \ 'n     'n \ Kr n,r n,r/ (| 

The approximate number of bombs surviving at airbase n is 
R R 

Y m times the above expression, so that the total number of 

bombs remaining is 

1^ i>^^{^H^XrCrvii°M! • 
D.  SURVIVING BLUE SLBM-IN-PENS WARHEADS 

p 
m :  number of submarines in pen n (n=l,2,3) (may be n 0 when there are fewer than 3 pens). 

P 
p  :  probability of single shot kill of a submarine 
"^   in pen n due to a class-r attacking unit, 

p :  individual reliability of a class-r attacking 
r  unit, 

q :  overall reliability of class r, 

P 
a  : probability that a class-r attacking unit will 
n,r  penetrate the defenses of pen n, 

P 
w : number of warheads per missile in pen n, 

p 
Y :  number of missiles per submarine in pen n, 

x i.:  number of class-r attacking units assigned to 
rH  "SLBMs-in-pens" (r=l,2,3). 

As with bombers, pens will be attacked in proportion to 

the number of submarines in each.  Thus, the number of class-r 

attacking units assigned to pen n is 

^ WJ, mn ' n-l 

If class r does not fall, the probability that a submarine in 

pen n will survive all class-r attacking units is 

1? 

C 



fl-p öp   pp ] 
P       r   P mn ^J^  mn 

Including the overall reliability, the probability that a sub- 
marine will survive is 

P        P 
\ /     P   P  \mn "rV ^ mn I 
j(l-qr) +% (l-Pr "n.r P„,r )   ^"'l " i- 

Thus, the probability of the submarine sur/iving the full attack 
is 

HM   ^ .   /i    P   P  \mn ^4/1 mn | 
^ j(l-q.r) + V(l-Pr an,r Pn,r)      n=1   j' 

so that the approximate number of SLBM-in-pens warheads that 
survive is 

lj 



Chapter IV 

VALUE DAMAGE FUNCTIONS 

For the purposes of this paper, let us suppose that damage 

to value on both sides can be adequately described by the 

following two functions: 

DB(x) = V^l-exp^ y* x15 ^j, 

DR(iL) = VR (^"X^/O)' 
where VD and ¥„ are the aggregate Blue and Red values and the 

B  R  B     R parameters y., y., v? and v. have been determined.  This deter- 

mination can be made using curve fitting techniques on the 

results of a one-sided allocation model for samples of possible 

Red attacks and Blue retaliations.  It is not even a requirement 

of this approach that these functions be expressible in explicit 

form.  For instance, the IDASNEM model uses the output of a sub- 

routine that assesses the damage against up to two thousand turret 

classes per side. 

U 



Chapter V 

SOLVING THE MODEL 

The foregoing allows us to write explicitly the model; 

.B v    /    . „       R. 

maximize ¥„ 
x     B 

subject to 

(l-exp^^ 4  x15 
Vl))- V^l-exp^^ y« yj ^ )) 

5 
I x^- < m.       1=1,.. .,1 

j=l :LJ   1 

x.^/n1 

y1 = w
1!!1  n  (l-Qi) + qJl-Pi ^i pi) 

s s s 
y2 = n w Y 

(    o    o  2  / /     0 xx,-,/nS 

(1-Tb) + TS 

ini |(i-qi) -^(i-PiP?) 
12  }j 

B ..  / r  B 

y3 
=Ji ^B Ji l^^+qi ^+(1-n') K 0M ^,i)^Xi3/-^j 

P      r   P 

^ ' Ji ^ ^ l'1^) + "if1""! 0n,l Pn.l) ,nn ltl'' "^   | 
Xy > 0  i=l,...,4  J=l,...,5 

yj > 0  J-l,...,^ 

We solve this problem using the approach of [33; that is, 

we first introduce new variables and perform some elementary 

15 
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manipulations to put the problem in separable form—in which each 

function g(£), where £ = (£,...,£), is of the form 

m 
;(£) =   I   giU«) 

1=1 ivbi 

In  separable  forrrij  this problem is 

maximize 
x z  cVcBCP 

fl-exp(-5B))   - VR(l-exp(-CR))j 

subject  to 

CB <   I   y? x       1 

.R 

1 = 1 

4 

i ~i5 

R 

5 
I_   x1(j  < r^ 1=1,...,4 

J-i 

x.n/n' 
In z 1 -  InCw^1)   >    J       Injd-q^  + dJl-Pi of pj)   11       j 

in[(Ä - (i-TS,)7]i J: ^l'1-^'+ qiK p0Xl2"! 
z, >  I  YB mj CB 3   ^2 n n n 

In ̂  ^ J, - 1 ^ ^i K + a-n*, (LP, <, <, )^ ^^ «^} j 
n«l,...,5 

zu  >    I    wP YP mP CP 
*♦ ~ ~Zt     n 'n n n 

16 
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p p 

p  ^  i     /  p p \m- w ^ \ } in < > ^ la] (1-q,) + q^l-p, a^ p^ j '  1 k=l ^ j  n=l,.. ..3 

R   R   R   P All x.., z,, E,  s   i t  C  ,   C    > 0.     Note that we have changed some 
equalities to Inequalities.  This was done only to improve the 

efficiency of the computation.  It is apparent by monotonicity 
that all Inequalities will be equalities at the optimal solution. 

The next step is to place upper and lower bounds on all the 

variables.  This can easily be done because the allocations on 
each side are bounded by the available resources.  The bounds 
appear in Table 1.  In ordc " to save space in this table, we 

have occasionally employed the notation &{£,)  and u(c) to denote 
the lower and upper bounds on variable ?> respectively. 

Because the problem comprises only scalar functions cf 

bounded variables, and because these functions remain bounded 
over their domains, we can approximate these functions by 
plecowise-llnear functions in the following way. 

Each function gCO in the separated problem is a function 
of a scalar variable for which we have lower and upper bounds 

Ü,(C), uU). We divide the Interval UU), uU)] into sublntervals 
determlred by the "cut points' t0, tl,...,tk where t0 = ÄU), 

t^ = u(c) and t0 < t1 < t2 < ... < t . Then we compute g(t ) 
for i = 0,...,k and form the piecewlse-linear function 

g(t) = -£r~i g(ti+1) - get1)! + get1) 

for t e t1, ti+1      1=0,...,k-1. 

This process is depicted in Figure 3. 

The problem thus generated will be called the "piecewlse- 
linear two-strike problem." Since all functions In the separated 
problem are con-cinuous, so are all the functions of the pieccwise- 

llnear problem.  Further, by taking enough cut points for each 

17 



Table 1.  LOWER AND UPPER BOUNDS 

Variable 

XTj (i=1'- 

zl 

Lower Bound 

,4: j=l,...,5)    0 

wVd-qjKl-q^ 

nSwSYS l-T^T^l-q^d-qg) 

Cn ^=1' 

v^ (n=l,.. 

.5) 

.,3) 

n=l  n  n   n 

' , n n   n 

j^h^r 
.^ n-q, + qi n*) 

3 
n (l-qj 

1 = 1   1 

Upper Bound 

w'n1 

s s s n w Y 

n-1 " n 

j, VA 

l, 4U(^]' 

variable, the piecewise-linear two-strike problem can be made to 

approximate the original two-strike problem arbitrarily closely 

according to any of a number of standard measures of closeness. 

The piecewise-linear problem has the advantage that it can 

be solved using a practical branch-and-bound algorithm developed 

by Falk [5]. This algorithm has been programmed for the computer 

twice. The NUGLOBAL code [71 used by Bracken, Falk, and Miercort 
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/(C)-t0 t = u(C) 

Figure 3.  PIECEWISE-LINEAR APPROXIMATION 

developed problems when applied to the model we have described 

above. A more stable code was developed by Grotte [6] and was 

the code used in the runs described below. 
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Chapter VI 

r.ESULTS 

The piecewlse-linear model was run on a CDC 6^00 computer. 

For all runs, upper and lower bounds were computed as described 

above and eight cut points per variable were chosen as follows. 

Noting that all functions g(i;) in the separated two-strike model 

had derivatives that were largest in absolute value for small 

5J and that decreased in absolute value as ^ increased, Wc felt 

that small intervals for small ?, and large intervals for large 

£;, should be used for constructing +.he piecewise-linear approxi- 

mating function g(c)'  Therefore, £(?) and u(c) were computed 

first, r = u(0 - (c)/ 127 was then calculated, and the cut 

points for C were chosen to be 

t1 = Jl(c) + (21-l)r       1=0,.. .,7. 

In this way, each subinterval was twice the length of the one 

preceding it, ensuring that there would be small subintervals 

at the low end of the interval [£(*;)> u(?)] and larger sub- 

intervals at the high end.  In practice, this procedure produced 

better results than using many more intervals of uniform length. 

Our investigation of the responses of the model begins with 

a base case set of parameters.  These are listed in Table 2.  A 

number of series of runs were performed in each of which a specific 

subset of parameters was varied in a systematic fashion.  Certain 

model outputs wer 3 then graphed to demonstrate the sensitivity 

of the model to parameter changes.  These are discussed below. 

Each run took between 100 and 200 seconds of CPU time. 
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Table  2.     BASE  PARAMETERS 

5000.0 

5000.0 

0.0005 

0.0003 

0.0003 

0.0003 

m. 

m. 

m. 

m. 

y 1 

R 
y2 

R 

6000.0 

1800.0 

1500.0 

1200.0 

0.0005 

0.0003 

0.0006 

0.0003 

Ml 

B 
^2 

B 

0.9999 

0.9999 

0.9999 

0.9900 

0.7 

0.5 

0.5 

0.5 

pl 

p2 

p3 

p< 

R 
yl 

R 
M2 

0.8 

0.8 

0.9 

0.7 

0.7 

0.5 

0.5 

0.5 

w 

w 

rl 

B 

-B _ 

,B „ 

1000.0 

6.0 

50.3 

10.0 

16.0 

0.3 

5.0 

10.0 m 

10.0 m 

10.0 m 

10.0 m 

4 
4 

0.8 

0.7 

0.9 

0.9 

0.95 

0.95 

B . 
1 

B _ 

Yc = 10.0  m 

100.0 

100.0 

200.0 

200.0 

50.0 

n^ = 0.5 

^ nö = 0.5 

nD3 = 0.4 

nj = 0.4 

115 = 0.6 
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0.95 ai2 

0.95 4 2 
0.95 43 
0.95 

^ 

0.95 ** 

0.95 

0.95 

0.95 

0.95 

0.95 



Table 2.  BASE PARAMETERS (continued) 

P
B

3I = 

0.97 

0.97 

0.97 

0.97 

0.97 

PB12 

P22 

p32 

nB 
p42 

0.97 

0.97 

0.97 

0.97 

0.97 

Nr = 3.0 

w 

'1 

'I 
P 

10.0 Yj = 16.0 mj = 25.0 aj = 0.9 oj 

P _ 
10.0 Y2 = 1 6.0  2 = 25-0 ö2 = 0-9 a 

P 
10.0 Y3 = 16.0  3 = 25.0 a!j = 0.7 a 

Hll 

p21 

P31 

0.85     Pj2 = 0.85 Pj. = 0.85 

0.85     pgg = 0.85     p^ = 0.85 

= 0.95 P32 = 0.95 .P 
33 p,, = 0.95 

0.9 a 

0.9 a 

0.7 0 

= 0.9 

= 0.9 

= 0.7 

A.  SERIES 1--MULTIPLES OF RED'S TOTAL ARSENAL 

The first series of runs demonstrates the effects of changes 

In the number of weapons in each Red weapon class. This was 

achieved by multiplying the basic values of the parameters m1, 

m2, m. and m^ by 0.2, 0.3i 0.^, 0.5, 0.6, 0.7, 0.8, 0.9> and 

1.0 so that the range of 20 percent to 100 percent of the basic 

Red arsenal was covered.  Inspection of the resulting damage 

curves in Figure 4 shows that as Red's arsenal increases. Red's 
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Figure 4.  VALUE DAMAGE AS A FUNCTION OF 
MULTIPLIER OF RED ARSENAL 
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ability to destroy Blue's value increases almost linearly, but 

Red's ability to protect itself from Blue retaliation does not 

improve for force levels above about 50 percent of the basic 

arsenal size.  Figure 5 indicates how Red allocates weapons 

between counterforce and countervalue missions for various 

arsenal sizes.  Note that for small arsenals. Red's optimal 

strike involves a relatively high level of counterforce operations. 

0.6 
MULTIPLIER 

Figure 5.  PERCENT RED WEAPONS ASSIGNED TO COUNTERFORCE MISSIONS 
AS A FUNCTION OF MULTIPLIER OF RED ARSENAL 
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B.  SERIES 2--CHANGES IN RED ICBM AGAINST BLUE SILO KILL 
PROBABILITY 

For the second series of runs, we changed only p,, which 

represents the probability of single shot kill of a Red ICBM 

warhead against a Blue silo.  Figure 6 exhibits the resulting 

value damage curves.  It Is apparent that for values of p, 

below about 0.5j changes In ICBM hard-target kill probability 

make little difference In the outcome.  Observe that as p. 

Increases, the damage differences Increase, which Is expected; 

but total damage to Blue value generally decreases,   since the 

more effective Red ICBMs are diverted from the c ^unter^alue 

attack In a successful effort to reduce retaliatory damage to 

Red.  Note the undulatory behavior of the curves.  We can Inter- 

pret Figure 6 as follows:  For p, less than 0.^, Red's attack 

remains the same, resulting in level damage curves for both 

Blue and Red.  For p, between 0.H  and 0.6, Red can take advantage 

of Increased ICBM effectiveness and so divert some of these 

weapons from countervalue to counterforce missions.  With fewer 

weapons against Blue value, the damage to Blue decreases. 

Damage to Red decreases because of Increased counterforce attack. 

As p, increases between 0.6 and 0.7, Red finds he can accomplish 

the same counterforce goal with fewer ICBMs and so he reapplles 

the excess to countervalue assignments, thereby increasing the 

damage to Blue while keeping the retaliatory damage to himself 

constant.  For p, between 0.7 and 0.75, Red can cause more 

counterforce damage with fewer weapons so that damage to himself 

actually begins to drop while damage to Blue still increases. 
I I 

Between p, = 0.75 and p, = 0.9, Red again diverts weapons fron 

value targets to Blue ICBMs, so damage to both sides decreases. 
T 

For p^" above 0.9» the curves begin to repeat the behavior seen for 
I 

p., greater than 0.6. This behavior results from rapidly changing 
*■ T 

allocations as p, changes, and indeed, one should note that in 

the case of a "flat" global optimum, or in the case of many 

local optima, all with values close together, the allocations 

25 



o> Q 
o 

CO o 
o 

>- 
1- 

—I 
l—t 

IS 
CQ 

o < 
CQ 
O 
cc 
CL 

•o Ul 
o X 

LL. 

o •—• «—• 
ft Q. 

o"*-" z 
o ft 

>—t O 
»- —1 
o H^ 

z CO 
^ => 
o u. LU 

3 
< —1 

CO 
to 
< < 

n 
o LU C3 

CD Z 
< *—i 

z: _l 
< —1 
Q t—< 

i£ 
o LU 

=} £ 
-J OQ 
< O 

SlINO JftlVA 

lO 

<u 

26 

i r 



may change almost dlscontlnuoualy as certain parameters are 

varied, even though the objective function changes smoothly. 

C. SERIES 3--CHANGES IN RED SYSTEM RELIABILITY 

This series of runs was conducted by assigning the values 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, one at a time, to 

all parameters q., , q2, q_, and q^.  These parameters represent 

the system reliability of Red's four weapon classes against 

Blue weapons only.  The resulting damage curves are displayed 

In Figure ?•  Note the swift decline In the damage suffered by 

Red as compared with the much slower decline In the damage suf- 

fered by Blue as Red shifts weapons of Increased reliability to 

counterforce operations.  Contrast the nonmonotonic behavior of 

the Blue damage curve to the strictly decreasing Red damage 

curve and the smooth rise of the damage difference curve.  Figure 

8 shows how the surviving fraction of Blue warheads changes for 

each class.  Observe that for low Red system reliabilities, Blue 

weapon class 1 (ICBMs) survives better than Blue weapon class 3 

(Bombers), while for high Red system reliabilities. Blue weapon 

class 3 has the edge. 

D. SERIES 4--CHANGES IN BLUE BOMBER SCRAMBLE PROBABILITIES 

This series tests the effect of varying the Blue Bomber 

scramble probabilities.  The variation was effected by assign- 

ing the values 0.5, 0.6, 0.7, 0.8, and 0.9, one at a time, 
R   R   B   B       B 

jointly to n-T» n?, H-^, n,),, and ric-  The damage curves appear in 

Figure 9« The result is that, as all the n* increase Red is 

not induced to change his attack, but Blue can inflict greater 

retaliatory damage owing to his improved bomber survivability. 

E. SERIES 5--MULTIPLES OF BLUE'S TOTAL ARSENAL 

The last series examines what happens when Blue's arsenal 

is increased over the basic values, by multiplying the basic 
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1400 
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JOINT VALUE OF q, 

Figure 7.  VALUE DAMAGE AS A FUNCTION OF RED SYSTEM RELIABILITY 

ISBBBBBP 
values of all the parameters n , n , m, > m , m  m^, nij-, m-> 
pp 1    C    J    lt    ?    J- 

mg, and m^ by 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5. Figure 10 

displays the damage curves. While an increased Blue arsenal 

improves Blue's retaliatory capability, it further serves a 

secondary role of drawing Red's attack away from Blue's value 

targets. 
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